

Evaluation of Solid Sorbents as a Retrofit Technology for CO₂ Capture

DE-FE0004343

Project Update: July 10, 2012

Presentation Outline

- Background
 - Participants
 - Project Goals
 - Project Overview
- 1 MW Pilot
 - Sorbent Characteristics
 - Contactor Design Selection
 - Host Site Information
 - Project Accomplishments
 - Future Plans

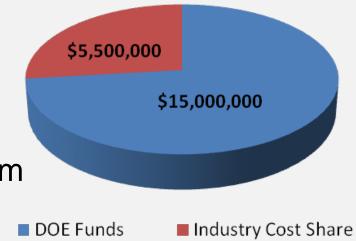
This information is provided "AS-IS" without warranty of any kind, and is subject to change without notice. Reproduction or use without the express written authority of ADA-ES, Inc., is strictly prohibited. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. ©2012 ADA-ES, Inc. All rights reserved.

ADA CO₂ Capture Program

• Phase I – Viability Assessment

- Cooperative Agreement: DE-NT0005649
 - Dual Focus: Sorbents & Process
 - 1 kW_e Test Device

• Phase II – FEED & Pilot Testing


- Cooperative Agreement: DE-FE0004343
 - Sorbent Selection & Reactor Design
 - Full-Scale Conceptual Design
 - 1 MW_e Pilot Unit
 - Techno-Economic Assessment
- Phase III (Demonstration)
 - Full-Scale Preliminary Design
 - Validate Design (>25 MW_e)

Project Goals

- The overall objective of this funding stage is to validate solid sorbent-based post combustion CO₂ capture through slipstream pilot testing.
- Project Goals:
 - Achieve 90% CO₂ Capture
 - LCOE increase less than <35%
 - o Generate a high purity CO₂ stream
 - Successfully scale sorbents

Federal Funding provided by the DOE National Energy Technology Laboratory's Innovations for Existing Plants Program

Project Objectives

- Reduction in energy penalty and costs associated with post-combustion CO₂ capture
- Reduction in overall environmental impacts versus other CO₂ capture options
- Reliable operation
- Applicable to retrofit and new builds
- Period of Performance:
 - October 1, 2010 December 31, 2014

Project Participants

• DOE – NETL

• Project Sponsor

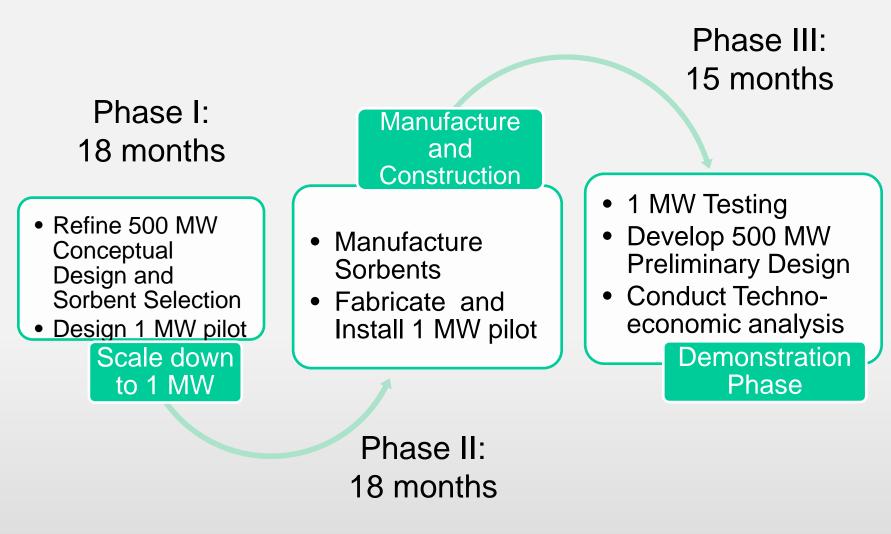
• ADA-ES, Inc.

- Project Management
- Sorbent Evaluation & Selection
- Conceptual Process Design
- Techno-Economic Assessment
- Shaw Energy & Chemicals, Inc.
 - Detailed Engineering Services
 - Significant Experience with
 Fluidized Bed Reactor Design
 - Isothermal and Adiabatic Reactors
 - Single & Multibed Reactors

- Stantec Consulting Ltd.
 - o Cost Analysis
 - o Plant Integration

- Owners Engineer
 Perspective
- EPRI

- ELECTRIC POWER RESEARCH INSTITUTE
- Industry Cost Share
- Independent Performance
 Evaluation and Techno Economic Assessment
- Southern Company
 - o Host Site
 - o Cost Share



Luminant

 Cost Share

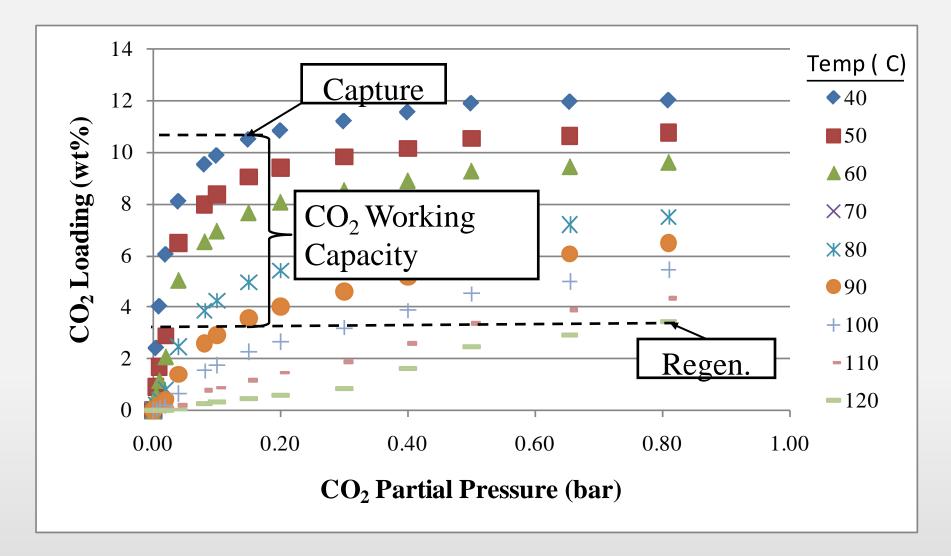
Luminant

Project Budget Period Overview

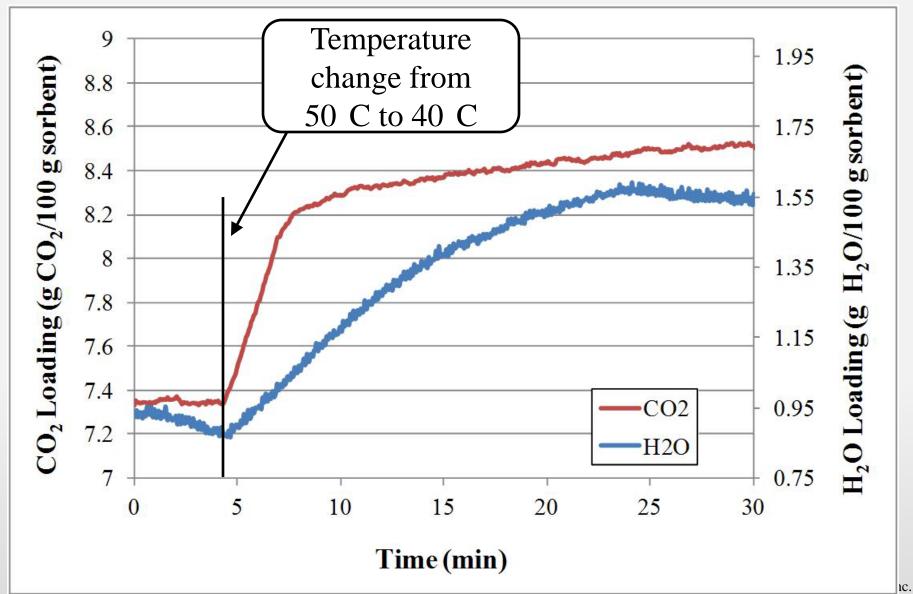
Potential Benefits of Solid Sorbents

- Energy Penalty
 - Sensible heat requirement is less although heat recovery should be considered
 - Latent heat of evaporation
- Corrosion
 - Less expensive materials of construction
 - No corrosion inhibitors required
- Air
 - Reduced emissions of amines
- Water
 - o Less cooling water required
 - o Minimal liquid waste
- Process Flexibility and Operability
 - o Can be applied to cycling plant "load following"
 - No risk of foaming or other solvent-related challenges

Sorbent Properties


Sorbent Selection

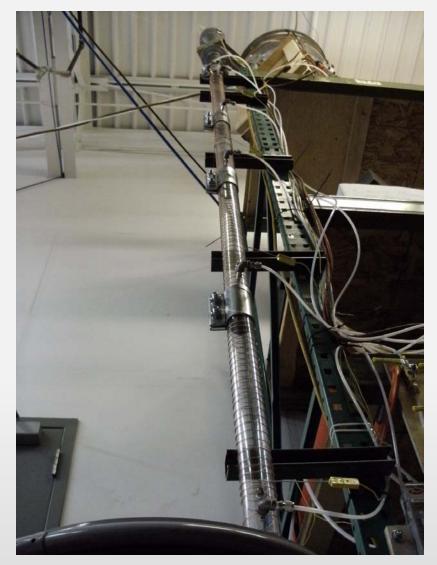
Selection Criteria


- o Kinetics
- Higher working CO₂ delta loading
- o Stability
- Part of a commercial process
- Experience with changing particle size
- Potential regeneration after the formation of heat stable salts
- 1MW Pilot Capacity
 - Approximately 5 tons (dry basis) required for operation
 - o Batches will have same specifications
 - QC checks through lab scale testing

Sorbent Isotherms

Sorbent Kinetics

1 MW Pilot Design

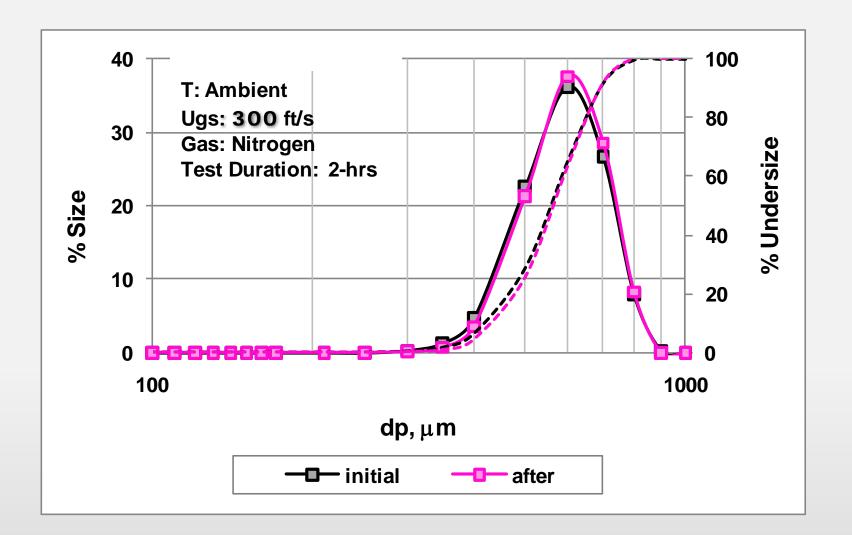

Design Considerations

- Capital costs
- Gas/solids contacting
- Heat transfer
- Sorbent attrition
- Pressure drop
- Maintenance requirements
- Footprint

Designs Considered

Comparison

- Similar
 - Capital costs
 - o Footprint
- Advantage TDR
 - Pressure drop
 - o Attrition
- Advantage SFB
 - o Gas/solids contacting
 - Heat transfer
 - o Commercial design



Fluidization Characterization

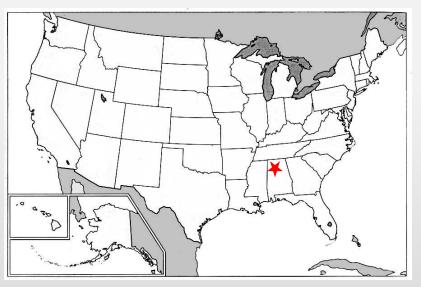
- Variables
 - o Sorbent particle size
 - o Gas velocity: (1-5 ft/s)
- Measurements
 - o Fluidization regime
 - Pressure drop (average and fluctuations)
 - Heat transfer coefficient
 - o Entrainment rate
- Results
 - o Optimized particle size distribution
 - o Bed density: 15-30 lb/ft³
 - o Heat transfer coefficient: 65-105 Btu/hr·ft² F
 - o Entrainment flux: provided operation limits

Mechanical Attrition Test Results

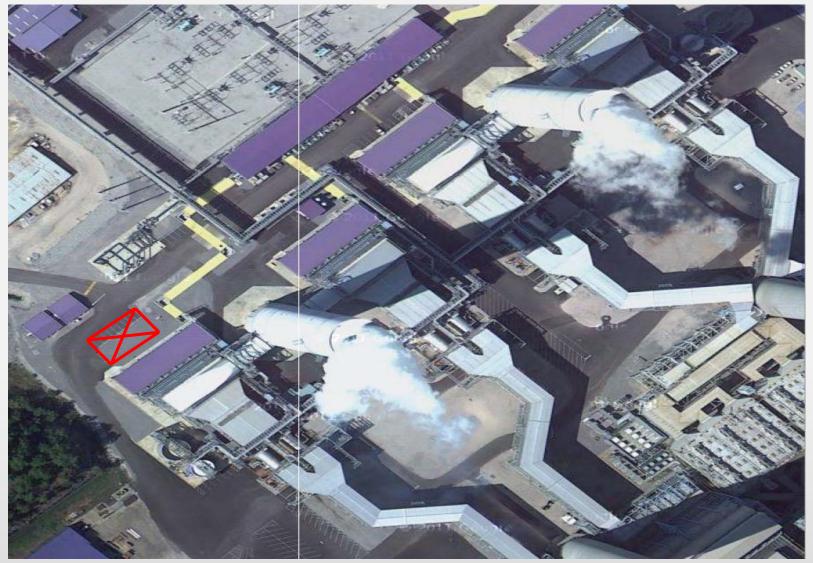
Process Conceptual Design

Principal


- Flue gas passes through ۲ Adsorber module where sorbent particle adsorbs CO₂
- Regenerable solid sorbent ٠ cycles between Adsorber and CO Regenerator. Raising the Adsorber temperature of the of the sorbent releases CO_2



All rights reserved.


Host Site

- Host Site: Southern Company Alabama Power Co. Plant Miller
 - \circ 4 EGUs (~2,640 MW_e)
 - o Flagship Plant
 - o PRB Coal
 - o WFGD
 - Pilot Located near WFGD on Unit 1

1 MW Pilot Location

1 MW Pilot Project Schedule

Milestone Description	Date
Start site work for 1 MW pilot	4Q12
Substantial completion of mechanical installation SOW	3Q13
Substantial completion of electrical SOW	4Q13
Demonstrate pilot operation	1Q14
Begin continuous performance testing	1Q14
Complete field testing	2Q14

Budget Period 2 Scope

- Procure and Manufacture Sorbents
- Procure and Fabricate Pilot-Scale Equipment
 - Procure Pilot Scale Equipment
 - Finalize Fabrication and Construction Work Packages
 - Equipment and Module Fabrication

Installation and Startup

- o Host-site Preparation
- o Mechanical Installation
- o Electrical Installation
- Commissioning/Startup Activities

Budget Period 3 Scope

- Pilot Scale Operation and Evaluation
 - Parametric Testing

60 Day Continuous Performance Test

- Define and Collect Compression and Sequestration Information
- Prepare Commercial Design Specifications

 Refine Full-Scale Design Specifications
 Full-Scale Conceptual Engineering Design
 Conduct Full-Scale System Economic Evaluation
 Heat Recovery Information

Creating a Future with Cleaner Coal

ADA-ES, Inc. 9135 S. Ridgeline Blvd. Suite 200 Highlands Ranch, CO 80129 (303) 734-1727 www.adaes.com Principal Investigator: Sharon Sjostrom sharon.sjostrom@adaes.com

> Project Director: Travis Starns travis.starns@adaes.com

Scientific Advisor: Holly Krutka holly.krutka@adaes.com

Project Engineering Manager: Marty Dillon martin.dillon@adaes.com

